

Page | 1

COMP 4632

Practicing Cybersecurity: Attacks and Counter-measures

Week 9 Lab Exercise
Topic: Web Application Vulnerabilities

Lab Objective

In this lab, you will try to perform web application attacks. This will include simulated

teaching lab and custom made application and aim at achieving the following objectives:

 Understand web application authentication and session management

 Understand basics of web sessions, cookies and authentication methods

 Identify and exploit web vulnerabilities

Task 1 – Playing with Browser Cookies

Browser cookies are commonly used by web applications to stored information at client

side or maintain sessions. In this task, you will work on a few exercises to be familiar

with the characteristics of browser cookies.

Task 1.1 Adding Browser Cookies

 Start Fiddler on the Windows 7 VM

 Access the course website (https://course.cse.ust.hk/comp4632/) from the

Chrome browser in Windows 7 VM

 Verify that the traffic is passing through Fiddler

 Check the traffic when browsing the course web site. There should be no

cookies sent. If there are any, clear the cookies in browser and restart this task.

 Do not close the browser or clear browser cookies in this task unless you are

explicitly told to do so.

 Try to understand the differences between the 3 different methods to add

browser cookies.

Task 1.1.1 Adding cookies in HTTP request headers

 Browse to the testing page

https://course.cse.ust.hk/comp4632/lab9_test/cookies.php which shows the

cookies sent in the request in an Array object (it should be empty).

 Turn on intercept request mode in Fiddle. Reload the testing page. In the

intercepted request, add the following HTTP header:
Cookie: testa=1

 See the output of the testing page. Compare the result with Chrome DevTools

(Press F12, then “Resources” panel > “Cookies” > “course.cse.ust.hk”). Are

they consistent?

 Disable interception mode in Fiddler, and reload the testing page. Observe the

cookie(s) in HTTP request sent, compare that with the output of the testing

page, and Chrome DevTools. Are they consistent now?

Task 1.1.2 Adding cookies with HTTP response headers

 Turn on intercept response mode in Fiddler, browse the testing page

again. In the intercepted request, add the following HTTP header.
Set-Cookie: testb=2

https://course.cse.ust.hk/comp4632/
https://course.cse.ust.hk/comp4632/lab9_test/cookies.php

Page | 2

 See the output of the testing page. Compare the result with Chrome DevTools.

Are they consistent?

 Disable interception mode in Fiddler, and reload the testing page. Observe the

cookie(s) in HTTP request sent, compare that with the output of the testing

page, and Chrome DevTools. Are they consistent now?

Task 1.1.3 Adding cookies with Javascripts

 Browse to the testing page. Go to the “Console” panel in Chrome DevTools.

Type the following and press <ENTER>:
document.cookie=”testc=3”

 See the output of the testing page. Compare the result with Chrome DevTools.

Are they consistent?

 Reload the testing page. Observe the cookie(s) in HTTP request sent, compare

that with the output of the testing page, and Chrome DevTools. Are they

consistent now?

 Keep the testing page opened. Type the following in the DevTools console

and press <ENTER>
document.cookie=”testd=4”

 Reload the testing page. Observe the cookie(s) in HTTP request sent, compare

that with the output of the testing page, and Chrome DevTools. Do you still

see the testc cookie?

Task 1.2 Understanding Characteristics of Browser Cookies

 Keep the browser opened at the testing page. Set the following cookies (each

line represents one cookie) either with HTTP response headers or Javascript.
teste=5; domain=.cse.ust.hk

testf=6; path=/comp4632/lab9_test

testg=7; domain=.cse.ust.hk; path=/comp4632/lab9_test

testh=8; Expires= Fri, 01 Jan 2016 00:00:00 GMT
testi=9; HttpOnly

testj=10; Secure

 Check the cookies on this page via the following 3 methods

o “Cookie” header in the corresponding HTTP request (check in

Fiddler)

o Chrome DevTools “Resources” panel > “Cookies”

o Chrome DevTools “Console” panel, type the following and press

<ENTER>:
document.cookie

 Perform the following actions. After each action, check what cookies are set,

and observe the differences between the 3 different methods for checking

cookies

i. Browse to https://www.cse.ust.hk/

ii. Browse to https://course.cse.ust.hk/comp4632/

iii. Browse to https://www.cse.ust.hk/comp4632/lab9_test/not_exist.html

(yes, you will see an error page)

iv. Browser to the page

http://course.cse.ust.hk/comp4632/lab9_test/cookies.php (note that the

protocol is HTTP instead of HTTPS)

v. Close the browser and reopen the testing page again

https://course.cse.ust.hk/comp4632/lab9_test/cookies.php.

https://www.cse.ust.hk/
https://course.cse.ust.hk/comp4632/
https://www.cse.ust.hk/comp4632/lab9_test/not_exist.html
http://course.cse.ust.hk/comp4632/lab9_test/cookies.php
https://course.cse.ust.hk/comp4632/lab9_test/cookies.php

Page | 3

Task 2 – Web Application Vulnerabilities – Authentication and Session Management

Flaws

In this task, we will walk through some of the common application vulnerabilities

related to authentication and session management. You are expected to understand the

how to identify and exploit vulnerabilities in the WebGoat lessons with Fiddler.

Task 2.1 Session Management Flaws

 Start Fiddler on the Windows 7 VM

 Access the WebGoat web interface from the Windows 7 VM

 Login with the Webgoat User account

o Username: guest

o Password : guest

 Verify that your WebGoat traffic is passing through Fiddler

Task 2.1.1 Spoof an Authentication Cookie

 WebGoat Lesson – Spoof an Authentication Cookie

 On the WebGoat menu, select Session Management Flaws  Spoof an

Authentication Cookie

 Try to login using the provided accounts pairs for multiple time,

“webgoat:webgoat” and “aspect:aspect”.

 Observe the pattern of the assigned session cookie values for different login.

 Observe and guess how the cookie values are generated cookie values on the

server side.

 By an educated guess, try to create a session cookie which let the server thinks

you are authenticated as “alice”. Inject this cookie into your browser and

complete the lesson.

Task 2.2 Authentication Flaws

 More applications adopt multi-factor or multi-steps authentication nowadays,

but improper implementation may lead to vulnerabilities, such as

impersonation, account hijack, privilege escalation, e.t.c.

Task 2.2.1 Flaws in Multi-steps Login Implementation

Page | 4

 WebGoat Lesson – Multi Level Login 2

 On the WebGoat menu, select Authentication Flaws  Multi Level Login 2

 Try to login using the provided account “Joe:banana” and submit a correct

TANS pair and observe the 2 HTTP requests sent.

 Usually application regard a user as an authenticated user after the first

request, but this intermediate authentication state may cause many problems.

 In some applications, you may also be able to bypass the second step of

authentication completely.

 Try to modify the request and login as the user “Jane” without knowing her

password or TAN.

End of Lab

